Главная Фотогалерея Рефераты Новости Видеогалерея Статьи  
 
 
Содержание
 
   

Галактика, свойства галактик

     Посмотрим теперь на некоторые свойства галактик, на их характерные особенности. Как мы уже говорили, Хаббл думал, что его камертонная диаграмма отражает эволюционный путь галактик. При этом он руководствовался гипотезой Джинса, согласно которой эллиптические галактики представляли собой гигантские газовые туманности. С течением времени туманность, охлаждаясь, сжималась и вращалась все быстрее, проходя последовательно все стадии от Е0 до Е7. При достижении определенной скорости вращения на экваторе туманности начиналось истечение материи в виде спиральных струй, в которых конденсировались звезды. Таким образом, туманность проходила весь путь по камертонной диаграмме, превращаясь в спиральные звездные системы.
      Сегодня нам хорошо известно, что эллиптические образования во Вселенной не туманности, а звездные системы. Вопрос эволюции уже образовавшихся звездных систем  галактик заставляет нас обратить внимание и на их вращение, взаимодействие друг с другом, причины морфологических различий и т. д.
     Одним из достаточно сложных и интересных вопросов является проблема очень широкого диапазона масс галактик. Для объяснения этой проблемы можно предположить, что определенную роль в образовании галактик играла не только газовая фрагментация, но и объединение, слияние первичных галактик. Однако вопрос о том, что образуется раньше: галактики или их скопления, непонятен до сих пор.
     Различия в морфологии галактик проявляются очень отчетливо. Многие имеют довольно выпуклую округлую форму, например, эллиптические. Такие галактики нередко концентрируются в богатых скоплениях, проявляя тягу к коллективизму. Для спиральных галактик характерно более индивидуальное поведение, они распределены во Вселенной более однородно и несколько шире распространены, чем галактики других типов. Какие причины могли привести к подобным различиям?
     В качестве одного из возможных механизмов ученые рассматривают слияние галактик. Этот процесс был промоделирован на ЭВМ. Результаты оказались чрезвычайно интересными.
     В процессе слияния двух галактик поначалу образуется объект совершенно неправильной формы. Но затем эти неправильности сглаживаются, и в результате образуется массивная галактика эллиптической формы. Процесс этот довольно быстрый (по космическим масштабам, конечно), он занимает «всего» несколько сотен миллионов лет. Можно думать, что эллиптические галактики - продукт столкновений протогалактик в скоплениях, а спирали образовались вне скоплений. Такова одна из возможных точек зрения.
         Интересно, что эллиптические галактики не бывают сильно сплюснуты. В экстремальных случаях у галактик класса Е7 сплюснутость достигает 3:1. Это, по всей видимости, связано с неустойчивостью вращающейся системы с большим значением сплюснутости. В результате такой неустойчивости может образоваться дискообразная структура, которая постепенно будет приобретать облик спиральной галактики. Подтверждением подобной точки зрения служит в известной мере наличие галактик класса SO. Это сильно уплощенные системы, занимающие промежуточное положение между спиральными и эллиптическими галактиками.
     Когда мы говорили о процессе слияния галактик, мы упомянули лишь о численном машинном эксперименте, подтверждающем возможность подобного механизма. Однако природа обладает здесь куда более впечатляющими иллюстрациями. Хорошо известно, что в скоплениях галактик присутствуют иногда гигантские галактики, радиус которых достигает миллиона световых лет. Такие образования в 100 раз могут превышать по массе и светимости нашу собственную Галактику, которая, как мы знаем, сама относится к категории гигантских.

Галактика сомбреро

Галактика сомбреро.
 
Спиральная галактика

Спиральная галактика NGS 891.

 


       В скоплениях звёздных галактик присутствует, как правило, лишь один такой сверхгигантский компонент - галактика-монстр. Каково же ее происхождение?
  Скажем прямо, механизм ее роста не совсем привлекателен с человеческой точки зрения,- это самый натуральный каннибализм. В чем же здесь дело? Поначалу галактика каннибал лишь ненамного превышает по размерам соседние. Но по мере движения по спиральной траектории к центру скопления эта галактика заглатывает более мелкие системы. Мелкие галактики, обреченные на съедение галактикой каннибалом, называют «миссионерами».
       Конечно, подобные процессы наблюдаются не в каждом скоплении галактик. Иногда взаимодействие галактик может иметь характер лобового столкновения. При таком столкновении центральные области одной из галактик - участниц катастрофы - могут быть выброшены наружу. В результате образуется кольцевая структура, представляющая собой неустойчивую, короткоживущую систему. Астрономам известно несколько кольцевых галактик.
      Здесь у читателя может возникнуть вполне уместный вопрос. Ведь хорошо известно, что галактики разлетаются друг от друга вследствие общего космологического расширения Вселенной. О каких же столкновениях может идти речь?
     Ключ к пониманию этих процессов лежит в поведении, во взаимодействии отдельных частей гравитационно связанных систем. Наиболее наглядный пример в этом плане представляет собой наша Солнечная система, которая никак не реагирует на общее космологическое расширение. То же самое характерно и для звезд внутри нашей Галактики. Именно поэтому, если какие-то системы связаны гравитационно, они остаются в пространственной близости друг от друга.
     Разумеется, закон всемирного тяготения описывает гравитационное взаимодействие на любых расстояниях. И в принципе любые системы во Вселенной гравитационно связаны между собой, в том числе и галактики, которые разбегаются друг от друга. Все дело в том, что в достаточно тесных, компактных по космическим масштабам образованиях, конечно, может существовать достаточно сильное гравитационное взаимодействие, определяющее собственную динамику поведения системы.
     Так, например, наш Млечный Путь, Большое и Малое Магеллановы облака, Галактика Андромеды со своим спутником и ряд других небольших галактик-спутников образуют группу галактик, называемую Местной группой, или Местной системой галактик. (Небольшие группы галактик - обычное явление в космосе. Типичная группа может содержать несколько десятков галактик.)
     Не только динамика взаимодействия галактик друг с другом заставляет вспомнить общее космологическое расширение. Существует еще одно немаловажное обстоятельство, связанное со строением галактик, которое может самым радикальным образом повлиять на характер расширения Вселенной. Что здесь имеется в виду?
В спиральных галактиках звезды, находящиеся в диске, обращаются вокруг общего центра масс. Движение этих звезд, а в общем случае не только звезд, но и пыли и газа, точно так же как и движение планет в Солнечной системе, определяется законом всемирного тяготения.
       Обычно в галактиках максимум яркости приходится на центр, а к периферии яркость быстро падает. Долгие годы астрономы полагали, что яркость пропорциональна массе, и поэтому масса, как и яркость, также уменьшается с расстоянием от центра Галактики. В этом случае вполне естественно было ожидать, что орбитальные скорости звезд должны меняться по закону Кеплера, другими словами, уменьшаться с увеличением расстояния от центра Галактики.
     В последнее время выполнены тщательные наблюдения вращающихся дисков многих спиральных галактик. Эти наблюдения принесли поистине сенсационные результаты. Оказалось, что в удаленных от центра галактик районах скорость вращения не уменьшается по мере увеличения радиуса. Более того, в ряде случаев она увеличивается. Не нашлось буквально ни одной сколь-либо протяженной области внутри изученных галактик, в которой скорость вращения уменьшалась бы с увеличением расстояния от центра. Но, поскольку закон всемирного тяготения незыблем, этот факт может означать лишь одно: масса в отличие от яркости отнюдь не концентрируется к центру спиральных галактик.
       И это еще не все. В галактиках есть невидимая масса, корректирующая скорости орбитальных движений. По всей видимости, спиральные галактики окружены мощной сферической короной невидимого вещества, причем размеры этой короны простираются далеко за пределы видимого диска галактик. Судя по всему, именно существование этого невидимого вещества и его гравитационное притяжение препятствуют уменьшению скорости вращения с увеличением расстояния от центра.
Косвенные указания на присутствие в нашей Галактике значительной невидимой массы были замечены около тридцати лет назад знаменитым голландским астрономом Я. Оортом, в честь которого назван кометный резервуар, находящийся на расстоянии более ста тысяч астрономических единиц от Солнца (знаменитое облако Оорта). Оорт оценил массу звезд и газа, которая требуется для стабилизации звезд, сферической составляющей нашей Галактики - «гало».
     Сейчас, после недавних измерений кривой вращения многих спиральных галактик, оказалось, что наличие в них большой невидимой массы - повсеместное явление в космосе. Массивная корона невидимой материи может распространяться в некоторых случаях на величину до трех радиусов диска. Если включить (а это совершенно необходимо) корону в картину общей морфологии нашей Галактики, то окажется, что наше Солнце и, соответственно, Солнечная система расположены отнюдь не на периферии Галактики, как считалось совсем недавно.
     Но это не самый важный вывод из наблюдений. Самое главное в том, что невидимая масса вполне может остановить расширение Вселенной. Мы помним, что значение критической плотности во Вселенной, то есть такой плотности, при которой Вселенная становится замкнутой и ее расширение рано или поздно сменится сжатием. Для достижения ркр плотность невидимого, ненаблюдаемого вещества должна примерно в 70 раз превышать плотность светящейся материи. Когда астрономы начали подсчитывать значение невидимой массы, оказалось, что оно может в некоторых случаях при переходе к все большим и большим системам, достигать значений, близких к критическим.
       Конечно же, следует учитывать то обстоятельство, что здесь степень нашего незнания определяется отсутствием информации о том, какая доля массы спиральных галактик недоступна сейчас для наблюдений. Вопрос о том, что представляет собой эта невидимая масса, также нельзя считать решенным. Ненаблюдаемая материя может быть представлена несостоявшимися звездами - гигантскими планетами типа Юпитера, а может быть, блуждающими планетами еще большей, чем Юпитер, массы. Быть может, это черные дыры. Наиболее «удобный» на сегодня кандидат - нейтрино, обладающие массой покоя, или гипотетические тяжелые частицы - монополи, фотино, гравитино. Многие из этих экзотических частиц могли в принципе дожить со времени начала Большого Взрыва и до наших дней (в том случае, конечно, если они устойчивы). Итак, мы видим, что кропотливое и тщательное изучение галактик дает материал исключительной важности для решения глобальных проблем космологии. 



   
Поиск
Rambler's Top100